Linear systems - Final exam

Final exam 2018-2019, Tuesday 18 June 2019, 9:00-12:00

Instructions

1. The use of books, lecture notes, or (your own) notes is not allowed.
2. All answers need to be accompanied with an explanation or calculation.

Problem 1

Solve the initial value problem

$$
t \dot{x}(t)-x(t)=t^{3} \sin \left(t^{2}\right), \quad x(\sqrt{\pi})=0
$$

Problem 2

Consider the scalar differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{3} q}{\mathrm{~d} t^{3}}(t)+q^{2}(t) \frac{\mathrm{d}^{2} q}{\mathrm{~d} t^{2}}(t)+q(t)-q^{2}(t)=u(t) \tag{1}
\end{equation*}
$$

(a) Write the differential equation (1) in state-space form $\dot{x}(t)=f(x(t), u(t))$ by using the state $x_{1}(t)=q(t), x_{2}(t)=\dot{q}(t), x_{3}(t)=\ddot{q}(t)$.
(b) Show that, for $u(t)=\bar{u}=0$ for all $t \geq 0$,

$$
\bar{x}=\left[\begin{array}{l}
1 \tag{2}\\
0 \\
0
\end{array}\right]
$$

is an equilibrium point. In addition, compute all other equilibria (again for $\bar{u}=0$).
(c) Determine the linearization of (1) around the equilibrium (2).

Problem 3

Consider the linear system given by the transfer function

$$
T(s)=\frac{s}{s^{4}+a s^{3}+a s^{2}+a s+1},
$$

where $a \in \mathbb{R}$. Determine all values of a for which the system is externally stable.

Consider the linear system

$$
\boldsymbol{\Sigma}: \quad \dot{x}(t)=A x(t)+B u(t),
$$

with state $x(t) \in \mathbb{R}^{3}$, input $u(t) \in \mathbb{R}$, and

$$
A=\left[\begin{array}{ccc}
-1 & -3 & -3 \\
1 & 1 & 1 \\
-2 & -5 & 0
\end{array}\right], \quad B=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right] .
$$

(a) Is the system $\boldsymbol{\Sigma}$ controllable?
(b) Find a nonsingular matrix T such that

$$
T A T^{-1}=\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right], \quad T B=\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right]
$$

for some matrices A_{11}, A_{12}, A_{22}, and B_{1} with the matrix pair $\left(A_{11}, B_{1}\right)$ controllable. In addition, compute the eigenvalues of A_{22}.
(c) Using the matrix T obtained in (b), find a state feedback $u(t)=F x(t)$ that stabilizes $\boldsymbol{\Sigma}$.

Problem 5

Consider the linear system

$$
\dot{x}(t)=\left[\begin{array}{ccc}
-8 & -10 & 0 \\
5 & 7 & 0 \\
-6 & -10 & -2
\end{array}\right] x(t)+\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right] u(t), \quad y(t)=\left[\begin{array}{lll}
1 & 2 & 0
\end{array}\right] x(t) .
$$

(a) Is the system observable? If not, find a basis for the unobservable subspace.
(b) Is the system detectable?
(c) Does there exist a stable state observer for the system?

Problem 6

Show that, for any matrix G, the matrix pair $(A-G C, C)$ is observable if and only if the matrix pair (A, C) is observable.

